Components

by
Table of contents

1 SCOPING APPENTEN ...ttt ettt bbbt e e e e e e e b e enis
2 ProfDOQ BIOWSEN.....ccueiiiieteiiestie ettt sttt ettt se e be e e sneenes
SLIGhtWEIGNt APPENTE ..o e eneenree s
4 ProfDog Collator (part of the BrOWSEN).......cccueiueeiiiiie et

Components

1. Scoping Appender

The heart of ProfDog is a custom log4j appender that looks for logging messages of a
certain format. These messages come in pairs marking the start and end of (what we have
called) scopes. These scopes have names and are nested within each other. The scoping
appender takes responsibility for matching up the pairs of start/finish messages,; when the
outermost scope has finished, it writes out the information to an XML file.

Asyou've probably realised, the most common and obvious place to define a scopeis at
the entry and exit of a method, so that the nested scopes represent methods within the call
stack. However a scope could be either more fine-grained or more coarse-grained than
that, either with multiple scopes can be started and finished within a single method, or
conversely scope could be defined at the beginning of each major subsystem within the
system. The second usage (coarse-grained) is more commonplace because ideally the
level of nesting should not exceed 10 levels or so, in the order of the number of major
subsystems or components that interact in order to produce the response to the user. For
the original system we used Spring to configure the system; we found that Spring
components are a reasonable level of granularity.

The other major responsibility of the appender isto manage multiple scopes at the same
time. When used in a server-side context (eg within an application server) there will be
multiple concurrent threads each being invoked (typically) by different end-users. Each of
these users nested scopes must be kept separate from each other. This responsibility does
in turn put an additional constraint on the format of the logging messages. it must be
possible to identify their owner. Thisinformation is easy enough to make available, eg in
athread-static or from the OS itself.

Although the scoping appender uses start/finish events to define the scopes within the call
stack (and thus the format of the XML file), it (being alog4j appender) also receives
regular logging events. Provided that these have been written such that their ownership
can be established, these messages are interleaved within the call stack. In other words,
the callstack provides a context for logging messages.

2. ProfDog Browser

In order to analyze the XML file an Eclipse RCP application was developed: thisis the
ProfDog browser. This alows the XML filesto be opened so that the timings of the
different scopes within the callstacks can be compared.

Since the callstack also has embedded (regular) logging messages, these too can browsed.
In practice we've found this to be more useful than using Chainsaw as away of browsing
log information.

3. Lightweight Appender

Page 2

Components

If you read the motivation section you may be wondering how we run the scoping (log4j)
appender under 11S. Y ou might also be thinking that the processing performed by this
appender runs counter to our original intent of developing a very lightweight monitoring
capability. And you would be right.

In fact, ProfDog has an additional appender - the lightweight appender. The role of this
appender isto simply format the messages and send them via UDP to a destination port.
Moreover, ProfDog has both alog4j and alog4net implementation of this appender.

Both log4j and log4net do in fact have UDP appenders. The purpose of our lightweight
appender isto provide plug-in pointsto (a) filter out messages that don't match the
appropriate format, and (b) specify how matching log messages are marshalled across the
wire.

4. ProfDog Collator (part of the Browser)

If the lightweight appenders are spitting out logging events over UDP, there needs to be
something listening to these messages. Thisisthe job of the ProfDog collator.

The collator opens up a UDP socket and accepts and unmarshalls logging messages.
These are then buffered for asmall period of time to allow for any UDP messages that
may have arrived out-of-turn. The collator then uses the ScopingA ppender to actually
write out the XML files representing the callstacks of separate interactions.

Originally the collator was intended to run as a stand-alone component, but it was
subsequently found more convenient to just roll its functionality into the Browser. Using
the Browser's GUI multiple sessions can be collated at the same time. Additionally the
browser shows the state of each scope, with running totals of its depth, the number of
messages, and so forth.

Page 3

	1 Scoping Appender
	2 ProfDog Browser
	3 Lightweight Appender
	4 ProfDog Collator (part of the Browser)

